THE EVOLUTION OF PAPAIN

Boris Weinstein

Department of Chemistry, University of Washington Seattle, Washington 98105

Received September 14, 1970

Summary. Papain possesses several regions of internal homology and similar shape. The enzyme probably formed through a series of gene doublings.

Archetype correlations between glucagon-secretin (Weinstein, 1968) and rubredoxin-ferredoxin (Weinstein, 1969) have been based on the process of gene duplication. Attention is now directed to the plant proteinase, papain. Recently, an x-ray study of this compound revealed the polypeptide chain to be folded into two distinct parts, separated by a groove (Drenth, et al, 1968). On either side of the depression lie a cysteine and a histidine. These two residues apparently constitute the active site of the enzyme. Further, the investigation showed that the earlier and tentative amino acid arrangement needed considerable modification (Light, et al, 1964). As a result, two groups have presented revised data on the primary sequence (Husain, et al, 1969; Mitchel, et al, 1970).

The symmetrical shape of papain, divisible at about residue 110, suggested a search for internal homologies between these regions. Segment 27-50 is duplicated both at 160-183 and 185-199, while 8-18 is again seen at 122-132 and 202-212. A third, tentative correlation lies between 48-54 and 116-122, where short pieces of a-helix are present. Other minor duplications exist, but they appear inconclusive on statistical grounds (Haber, et al, 1970). A few additional alignments become available through the introduction of gaps; however, the lack of variant papains for comparison does not encourage this approach. The principle relationships are summar-

50 G1u	183 Glu	199 Val			
Ser	<u>G1y</u>	G1y	54 Leu	122 Leu	
Asn Leu <u>Asn</u> Gln <u>Tyr</u>	ľrp	Ser Tyr	Leu	Leu	
Gln	G1y		Ser Glu Gln Glu <u>Leu</u>	Asn Gln Gly Ala Leu	
Asn	Thr	Asn	Gln	Gly	
Leu	G1y	r Gly A	61u	Gln	
	Trp	ij	Ser	Asn	
43 G1y	176 Ser	Lys Arg Gly	48 Tyr	116 Tyr	
Ile Lys Ile Arg Thr	Asn	Arg			
Arg	Lys	Lys			
Ile	u Ile L	[]e			
Lys	Le	Arg			
Ile	Ile	Ile			0.1
Ile	Tyr	Tyr	18 Asn	132 Val	212 Asn
36 G1y	169 Gly	185 Gly	Lys	Ser	Lys
Ile Glu	Pro		Val	Val	Val
Ile	Ası		Pro	Pro	Pro
Thr	Gly Tyr		l Thr 1	Gln	Tyr
Val			۸	a Asn (Phe
Val	Val		Lys Gly <u>Ala</u>	Ser Ile Ala	Ser Ser
Ser Ala	Ala		613	Ile	Ser
	Val Ala		Lys		Thr
Phe			Gln I	Tyr	Tyr
27 A1a	160 Ala		8 Arg	122 Leu	202 Leu

Identical positional residues are underscored. Long internal homologies in papain. Figure 1.

ized in Figure 1.

It is interesting to note that the first half of the protein has two miniature wings, whose walls are constructed by sections 69-81 and 52-65, plus 95-100 (Dickerson, et al, 1969). The cystine bridges between 22-63 and 56-95 are included within this area. Juxtaposed in space to cysteine 56 is histidine 81. This pair may mark the original sulfhydryl active site in a more primitive papain.

These relationships suggest the ancestral precursor began as a protein with about 55-65 residues, followed by a doubling to 110-130 units. A reduplication then extended the chain to about 185 amino acids. Later, two shorter extensions afforded the present day papain. It is realized such arguments are speculative in nature, but they can serve as a stimulus to the future synthesis of modified or new papains. Certainly, the availability of other sulfhydryl plant proteinases would act both as a guide and an extension to additional work in this area.

ACKNOW LEDGEMENT

The author wishes to thank the National Institute of Health for partial support (AM 12616).

REFERENCES

Dickerson, R. E., and Geis, I., Stereo Supplement to The Structure and Action of Proteins, Harper and Row, New York, 1969, p. 18.

Drenth, J., Jansonius, J.N., Koekoek, R., Swen, H.M., and Wolthens, B.G., Nature, 218, 929 (1968).

Haber, J. E., and Koshland, Jr., D. E., J. Mol. Biol., 50, 617 (1970).

Hasain, S.S., and Lowe, G., <u>Biochem.</u> J., <u>114</u>, 279 (1969).

Light, A., Frater, R., Kimmel, J.R., and Smith, E.L., <u>Proc. Nat. Acad.</u> Sci. <u>U.S.A.</u>, <u>52</u>, 1276 (1964).

Mitchel, R. E. J., Chaiken, I. M., and Smith, E. L., J. <u>Biol. Chem.</u>, 245, 3485 (1970).

Weinstein, B., Experientia, 24, 406 (1968).

Weinstein, B., Biochem. Biophys. Res. Commun., 35, 109 (1969).